Dirac operators and spectral triples for some fractal sets built on curves

نویسندگان

  • Erik Christensen
  • Cristina Ivan
  • Michel L. Lapidus
  • Michael J. Hopkins
  • Alain Connes
چکیده

We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral triples do describe the geodesic distance and the Minkowski dimension as well as, more generally, the complex fractal dimensions of the space. Furthermore, in the case of the Sierpinski gasket, the associated Dixmier-type trace coincides with the normalized Hausdorff measure of dimension log 3/ log 2. © 2007 Elsevier Inc. All rights reserved. MSC: primary 28A80, 46L87; secondary 53C22, 58B34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets

We construct Dirac operators and spectral triples for certain, not necessarily selfsimilar, fractal sets built on curves. Connes’ distance formula of noncommutative geometry provides a natural metric on the fractal. To motivate the construction, we address Kigami’s measurable Riemannian geometry, which is a metric realization of the Sierpinski gasket as a self-affine space with continuously dif...

متن کامل

Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions

In this paper, we study the inverse problem for Dirac differential operators with  discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...

متن کامل

Equivariant spectral triples for SUq(l + 1) and the odd dimensional quantum spheres

We formulate the notion of equivariance of an operator with respect to a covariant representation of a C∗-dynamical system. We then use a combinatorial technique used by the authors earlier in characterizing spectral triples for SUq(2) to investigate equivariant spectral triples for two classes of spaces: the quantum groups SUq(l+1) for l > 1, and the odd dimensional quantum spheres S q of Vaks...

متن کامل

Quasi-Dirac Operators on the Sphere

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find quasi-Dirac operators and calculate the index paring with a representant of K-theory class to prove that the quasispectral triples are mutually inequivalent. MSC 2000: 58B34, 46L87, 34L40

متن کامل

Quasi-Dirac Operators and Quasi-Fermions

We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find equivariant quasi-Dirac operators and prove that they are in a topologically distinct sector than the standard Dirac operator. MSC 2000: 58B34, 46L87, 34L40

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006